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Variational formulation of nonequilibrium thermodynamics for hydrodynamic pattern formations

H.-J. Woo*
Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003

~Received 16 July 2002; published 6 December 2002!

It is shown that a direct extension of the variational principle of near-equilibrium states due to Onsager leads
to the analogous principle in hydrodynamic flows; the entropy production rate of an isolated system is maxi-
mized both near and far from equilibrium. It possesses as its extremal paths the solutions to the hydrodynamic
equation of motion, and provides a general pattern selection criterion far from equilibrium.
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I. INTRODUCTION

Despite important progresses being made recently@1–7#,
the task of extending the equilibrium statistical mechan
and thermodynamics to the far-from-equilibrium situation
under which many fascinating phenomena including patt
formations in driven systems and self-organizations in liv
organisms occur@8#, remains incomplete. A prime source
difficulties is the apparent lack of a quantity analogous
free energy, whose minimization condition yields mac
scopic observables@1,8#. Specific studies of pattern forma
tions have thus been mainly confined to analyzing soluti
of phenomenological evolution equations, such as hydro
namic or reaction-diffusion equations@8#. When confronted
with multiple stationary solutions typically generated by b
furcations, one has little guide other than empirical means
how to select or properly weigh the solutions. On the co
ceptual level, the difficulty in formulating such a variation
approach poses an awkward gap in our description of na
between the physical and biological realms, with the la
characterized by the ubiquitous emergence of order ou
disorder, whose ‘‘driving force’’ is nowhere obvious.

Such ‘‘pattern selection’’ problem, or more fundamenta
the identification of the proper thermodynamic variation
principle, is distinct from the focus of the theory of fluctu
tions @6,7,9,10#, where one considers the probability of o
serving a spontaneous deviation from a particular solutio
the macroscopic equation of motion. Our aim in this pape
to examine how one can properly select the particular s
tion to the equation of motion among the finite or infini
number of possibilities.

In particular, we consider the following variational prin
ciple: in isolated macroscopic systems both near and far f
equilibrium, the entropy production rate is maximized. T
usefulness of the maximum heat flux criterion in convect
as anad hochypothesis has been noted before@11–13#. Ex-
perimental evidences in a diverse range of turbulent flo
have been collected recently in Ref.@14#, where it was
shown that a simple and unified description becomes p
sible by introducing the assumption of the maximum entro
increase rate. A well-founded theoretical basis for such e
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pirical observations is provided here by arguing that
variational principle formulated by Onsager@15,16# can, in
fact, be extended without modification to hydrodynamics
from equilibrium. The hydrodynamic equation of motion ca
be regarded as the most probable path that emerges from
variational principle. It thus potentially provides ana priori
principle of pattern selection valid from equilibrium up t
turbulent flows; patterns are formed and selected to m
mize the rate of entropy increase of the universe contain
the system.

In the following section, the general form of the vari
tional principle is stated and its relationship with the Onsa
theory is discussed. Hydrodynamics is considered in the c
text of the variational principle in Sec. III. Section IV dis
cusses implications to the properties of nonequilibrium s
tionary states using the Rayleigh-Bena´rd convection~RBC!
@8,13,17# as a model system. The relationships of the var
tional principle to the ‘‘minimum entropy production theo
rem’’ @18# are also considered in Sec. IV.

II. VARIATIONAL PRINCIPLE

According to the second law, the equilibrium stateai
` of

the set of conserved extensive thermodynamic variablesai of
an isolated system~‘‘universe’’! is determined by

S~ai
`!5~maximum!, ~1!

subject to certain constraints, whereS(ai) is the entropy
@19#. The variational principle we consider in this paper is
close analog of Eq.~1!: for a system with hydrodynamic
flows, the most probable macroscopic pathai(r ,t) approach-
ing ai

` satisfies

Ṡ@ai~r ,t !#5~maximum!, ~2!

subject to appropriate constraints, whereṠ is the total rate of
entropy increase. The ‘‘constraints’’ include the intrinsic d
namics ofai , represented by the phenomenological mac
scopic equation of motion. Equation~2! states that the time
dependent nonequilibrium trajectory of a macrosco
systemai(r ,t) is determined by the condition that the overa
entropy production rate of the universe containing the sys
is maximized. The intuitive motivation behind Eq.~2! is the
expectation that in its approach to equilibrium, an isola
system would follow the most efficient route to increase

l
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entropy under the constraints. If ‘‘heat always flows dow
hill’’ according to Eq.~1!, Eq. ~2! implies that ‘‘the heat flow
finds the fastest way downhill.’’

Equation ~2! is closely related to Onsager’s variation
principle @15,16#, which states that near equilibrium,

Ṡ2F5~maximum!. ~3!

In Eq. ~3!, Ṡ is the total entropy production rate of a macr
scopic system. The ‘‘dissipation function’’F is defined as

F5
1

2E dr ~L21! i j Ji•Jj ~4!

in terms of the set of fluxesJi associated withai , and the
kinetic coefficientLi j that satisfies the reciprocal relatio
Li j 5L ji . Summations over repeated indices are implied. T
total entropy production rate is given in terms of the loc
valuesṡ by

Ṡ5E dr ṡ5E dr “Xi•Ji , ~5!

whereXi5]S/]ai is the intensive variable conjugate toai .
The variations refer to those ofJi , or the rate of change o
the state, given the stateai(r ,t) at a particular instant. The
Euler-Lagrange equation corresponding to Eq.~3! is

Ji5Li j“Xj , ~6!

the linear phenomenological constitutive equation, which
refer to as the ‘‘equation of motion.’’ It is a natural genera
zation of the typical procedure one performs in equilibriu
thermodynamics, where an application of Eq.~1! gives the
equation of state.

It is important to recognize Eq.~6! as theconsequenceof
the variational principle, the most probable path that ma
mizes Ṡ2F. Near equilibrium, there typically exists
unique solution to Eq.~6! under the given conditions, and th
practical utility of Eq.~3! is rather limited. However, if we
were to imagine a situation where there are multiple so
tions to the equation of motion, one would have to comp
the values ofṠ2F corresponding to each extrema a
‘‘choose’’ the one with the maximum value. For the subset
trajectories satisfying Eq.~6!, we haveF5Ṡ/2 from Eqs.
~4!–~6!. Therefore, when we project the full trajectory spa
into a subset in which the equation of motion is satisfied,
~3! would reduce to Eq.~2! @25#.

Strictly speaking, such an extension would involve t
assumption, which goes beyond the original context con
ered by Onsager, that Eq.~3! continues to be valid when th
equation of motion leads to multiple solutions, with th
‘‘maximum’’ referring to theglobal maximum. It is the basic
assumption we take in this paper. Its intuitive plausibil
appears obvious, and is strengthened by the consistency
Eq. ~2!.
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III. HYDRODYNAMICS

Bifurcations producing instabilities and multiple statio
ary solutions arise from the intrinsic nonlinearity of the u
derlying equation. However, the nonlinearity in hydrod
namics is due to the conservation laws, and not to
departure from the linear constitutive relations~6!. It is
worthwhile in this sense to contrast Eq.~6! with the equation
that governs the total time evolution ofai ,

]

]t
ai52~v•“ !ai2“•Ji , ~7!

wherev is the velocity. A traditional approach of formulatin
thermodynamic descriptions of hydrodynamics has been
start with Eq. ~7!, and cast it into the ‘‘Onsager form,’
]ai /]t5Li j Xj @20,21#, which defines the generalized kinet
coefficientLi j and is inevitably nonlinear. Such an explic
equation forai(r ,t) is necessary in considering fluctuation
Since our aim is to formulate a purely thermodynamic var
tional principle, we instead regard the dynamics ofai as an
implicit consequence of Eq.~6! and the conservation laws.

The Onsager’s variational principle can thus be adap
straightforwardly to hydrodynamics. Specifically, we assu
local equilibrium in the following sense: although each loc
volume elements are in equilibrium and their thermodynam
variables are smoothly varying, globally, the system can
far from equilibrium @ai(r ,t)2ai

` is arbitrarily large#. The
entropy production rate can be written@22# as

ṡ5
pab

2T S ]va

]xb
1

]vb

]xa
2

2

3
dab

]vg

]xg
D1

l

T

]va

]xa
1Jq•“

1

T
,

~8!

where pab and l are the traceless and bulk parts of t
viscous stress tensor,va and xa are the Cartesian compo
nents of the velocity and position vectors,Jq is the heat flux,
andT is temperature. The dissipation function can be defin
as

F5
1

2E dr S pabpba

2Th
1

l2

Tz
1k21Jq•JqD , ~9!

whereh, z are the shear and bulk viscosities, andk is the
heat conductivity. Application of Eq.~3! gives the equation
of motion,

pab5hS ]va

]xb
1

]vb

]xa
2

2

3
dab

]vg

]xg
D , ~10a!

l5z
]va

]xa
, ~10b!

Jq5k“
1

T
. ~10c!

The rest of the ingredients necessary to obtain the full se
hydrodynamic equations of motion in the schematic form
Eq. ~7! are simply the conservation laws of mass, mome
tum, and energy, which should be regarded asconstraints
4-2
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present even for microscopic dynamics. In theories@7,10#
considering the generalization of the Onsager-Mach
theory @9#, the dissipation function has usually been defin
as a quadratic form of Eq.~7!. When we consider the con
servation laws as part of the constraints, Eq.~9! is the more
natural form.

Therefore, the extremal paths of the variational princi
~3!, extended to far from equilibrium, coincide with the ma
roscopic trajectories one normally obtains by solving the
Navier-Stokes and energy equations. Equation~2! applies if
we restrict ourselves to the subset of trajectories satisfy
the equation of motion. It corresponds to the situation wh
we ignore the vastly improbable fluctuations away from
trajectories satisfying Eq.~6!.

IV. STATIONARY STATES
We now consider the consequences of the variatio

principle to the stationary states. In reality, realizations
stationary states can, in fact, only be quasistationary s
the reservoirs cannot be infinite in size~Fig. 1!. Any non-
equilibrium process occurring within the system of intere
S, is beingdriven by the imbalance ofXi between the two
reservoirs, andS is forcedto utilize the best possible route t
relieve the imbalance, allowing the universe to reach the g
bal equilibrium most efficiently. Equation~2! quantifies such
an intuitive statement; since the dissipation occurring in
reservoirs is negligible by definition, the rate of entropy
crease of the universe equals the entropy production wi
S, which would be maximized@Eq. ~6.4! of Ref. @15##.

The often-used term for Eq.~3!, ‘‘the principle of least
dissipation,’’ refers to a rather different special case as
lows: the flux on the boundaries ofS is prescribed, which
fixesthe entropy production rate for stationary states. Eq
tion ~3! then implies thatF is minimized@15#. This special
case is also the most relevant one if we are considering
probability of aspontaneousfluctuation of a part of the sys

FIG. 1. An example of a time-dependent nonequilibrium traj
tory between two equilibrium states generating quasistation
states. The total isolated system is partitioned into three subsyst
S, R1, and R2, whereR1 and R2 serve as reservoirs toS. The
subsystems are initially segregated, each with differentXi . At t
50, the gates are opened, inducing flowsJi . By taking the volume
ratio of the reservoirs toS and the transport coefficient ofR1 and
R2 large enough@23#, the time dependence of the nonequilibriu
relaxations can be made to approximate the stationary state flo
06610
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tem which is either in equilibrium@9# or in a stationary state
@7,10#. Since the particular part of the system where the i
probable fluctuation is occurring is notdriven by the sur-
rounding region~the average net flux around the subsyst
boundary is fixed!, the most probable path creating the pa
ticular fluctuation is the one that minimizes the dissipatio

The ‘‘minimum entropy production theorem’’ for station
ary states@18# might appear to contradict Eq.~2! near equi-
librium. To illustrate its relationship to Eq.~2!, we consider a
generalized version of the proof in Ref.@18#. One presup-

poses the equation of motion ~6!, which gives Ṡ
5*drLi j“Xi•“Xj . The deterministic time evolution is the
followed along a solution. Taking a time derivative and int
grating by parts,

]Ṡ

]t
5 R Li j

]Xj

]t
“Xi•dA2E dr¹2XiLi j

]Xj

]t
, ~11!

where the first integral is over the boundaries betweenS and
the reservoirs. For the series of quasistationary states ge
ated as in Fig. 1, the values ofXi in Rm , Xi

(m) are indepen-
dent ofr , and change only quasistatically int. Using Eqs.~6!
and ~7!, we get

]Ṡ

]t
5AJi

(m) ]

]t
Xi

(m)1E dr
]ai

]t

]aj

]t

]Xi

]aj
1E dr ~v•“ !ai

]Xi

]t
,

~12!

whereA is the surface area of the boundaries andJi
(m) is the

flux out into Rm . The integrand in the second term can
recognized as a special case of the second-order variatio
entropy,

d2S5
]2S

]ai]aj
daidaj<0, ~13!

necessarily negative definite from the second law. For a t
intervaldt small enough such thatdXi

(m).0, the first term in
Eq. ~12! is negligible. If we assumev50, the entropy pro-
duction monotonically decreases to reach the stationary s
which was the origin of the term ‘‘minimum entropy produ
tion.’’ More appropriately, in the absence of convection, t
stationary state is an attractor with minimum dissipation u
der the deterministic dynamics of trajectories maximizi
Eq. ~3!. The stationary state near equilibrium thus can
thought of as a ‘‘saddle point’’ when we use the variations
trajectory,dJi anddt, as the two axes~Fig. 2!.

For a larger time intervaldt@dt, for whichdXi
(m) is non-

negligible, it is more convenient to observe that the series
quasistationary states satisfy

Ṡ5 R dA•JiXi , ~14!

since the overall entropy ofS remains constant in stationar
states. The quasistatic ratedṠ/dt is given by

-
ry

s,

s.
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dṠ

dt
5A

d

dt
~JiDXi !<0, ~15!

whereJi5Ji
(2)52Ji

(1) andDXi5Xi
(2)2Xi

(1) . The inequality
reflects the expectation that the magnitude ofJi , and there-
fore DXi , would only decrease in time as the equilibrium
approached.

Figure 2 summarizes the expected behavior of the ove
nonequilibrium thermodynamics represented by variatio
principle ~3!. A RBC system of Fig. 1, initially set up with a
Rayleigh number above the threshold,R.Rc , at t50, is
allowed to relax toward equilibrium. At each timet, S is in a
quasistationary state withR5R(t). For any t, solutions to
the equation of motion~6! correspond to the set of extrem
of Ṡ2F. The maximum would be selected, which shou
also be hydrodynamically stable to be physically realizab
Equation ~14! implies that for a givenR, the overall heat
flux, or the Nusselt numberN, would be maximized. Fort
,tc @where R(tc)5Rc], convective rolls with a band o
wave numbers are stable@13,24#, and the roll with the maxi-
mumN would be realized. At the threshold, the rolls becom
unstable, and the conduction becomes the only stable s
tion for R,Rc . When we restrict ourselves to the loci o
local maxima of Eq.~3!, or equivalently, make a projectio
of the thick lines in Fig. 2 onto thet versusṠ plane~Fig. 3!,

FIG. 2. A schematic rendering of the evolution of entropy p
duction landscape expected for Fig. 1. A RBC system initially w
R.Rc at t50 evolves toward the equilibrium whereR50 at t
5`. At each t, the systemS is in quasistationary states for th
given R(t). TheJi axis represents the space of macroscopic tra

tories satisfying the conservation laws. The dotted lines are thṠ
2F profiles at eacht. The thick solid lines are the loci of trajecto

ries, given by Eq.~6!, maximizingṠ2F. The convective roll state
is replaced by conduction at the instability threshold whereR(t)
5Rc .
ett

ett
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the variational principle now takes the form of Eq.~2!. Equa-
tion ~15! dictates that the slope is negative therein.

V. DISCUSSIONS

It should be noted that the existence and stability of
stationary solutions are determined not by the variatio
principle, but via the full nonlinear dynamics of Eq.~7!. The
entropy production rate isnot a potential or Lyapunov func-
tion to the dynamics. Therefore, it is possible, and in fact h
been noted before@13#, that a solution might remain unstab
and thus physically inaccessible even though it has a la
overall heat flux.

The plot of entropy production rate as a function of co
trol parameter, such as Fig. 3, is a close analog of the e
librium counterpart, the free energy versus an intensive v
able. The threshold in RBC would then be an example
nonequilibrium phase transition. Unlike the full landsca
shown in Fig. 2, it can be straightforwardly obtained f
cases where one can obtain solutions to the nonlinear hy
dynamic equation. Thus the entropy production rate is s
to play the role of thermodynamic potentials for nonequil
rium stationary states.

Onsager’s variational principle, Eq.~3!, depends crucially
on the validity of the linear phenomenological equation
motion, which justifiesa posteriori the definition of the dis-
sipation function~4!. It remains to be seen whether Eq.~2!,
which appears general, still holds for systems where the
sic dissipative relation is intrinsically nonlinear, as is typic
in chemical reactions.

-

-

FIG. 3. A projection of the maximal path in Fig. 2 onto thet-Ṡ
plane. They axis shown is the the entropy production rate norm
ized by the pure conduction value, equal to the Nusselt numbeN.
The solid line forR.Rc51708 is from Ref.@24# for the rolls with
Prandtl numberP57.0 and wave numbera53.117. The solid and
dashed lines atN51 represent the stable and unstable branche
the conduction mode.
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